UPDATING THE CLASSIC POTTER 19

I. Potter Hull shape

- A. Hull is a great candidate for updating
- B. Can sail faster than displacement hull speed due to flat panels

II. Potter 19 Sport and Voyager 20 vs Classic 19

- 1. Sport and Voyager have more ballast than Classic P19
 - a) Stiffer than a P19 classic
 - b) allows boat to carry more sail area
- 2. Sport and Voyager have a Taller Mast than Classic P19
 - a) Faster boat than the P19 Classic
 - b) 30% more sail area overall
 - c) 25' mast, 7/8 fractional rig
- 3. Judy B's Potter 19 Sport Fastest, Stiffest, Sportiest Potter
 - a) 300 pound keel bulb at bottom of the standard steel keel = 570 pounds
 - (1) Draft 49"
 - (2) Boat has 2.5 times more righting moment than Classic Potter –
 - (3) Self-righting in a knockdown
 - (a) Angle of Vanishing Stability was calculated @ 102-104 degrees
 - b) Bow sprit for Asymmetric Cruising Spinnaker -
 - c) New P19 interior without port cabinet is much more open inside.
 - Marine's Voyager 20 Biggest, very stable, most comfy Potter
 - a) LOA is 19.5'
 - (1) Added 1' to cockpit, new lockers, etc.
 - b) Shoal keel with approx. 500-600 pounds ballast
 - (1) Boat tracks extremely well, like a cutaway
 - c) No keel trunk in cabin.
 - d) New Interiour without port cabinet is very open inside
 - e) Boat is much stiffer than Classic Potter

CRUISING SPINNAKERS: SAILING FASTER THAN THE WIND

III. Modern Sailplan

- A. Mainsail
- B. Working jib for upwind work
 - 1. Also for all points of sail in high winds
- C. Free-flying Spinnaker
 - 1. Replaces your big genoa or drifter
 - 2. Cruising Asymmetric Spinnaker
 - a) You can sail downwind faster than the true wind
 - b) Use like a genoa or drifter for upwind angles in lighter winds
 - 3. Cruising Code Zero
 - a) You can sail upwind faster than the true wind
 - b) Use for downwind angles in higher winds
- IV. Apparent wind diagram.

R.

- A. If you sail faster than the true wind, the apparent wind is always on your bow
 - 1. Upwind
 - 2. Downwind too!
 - If the wind is on your bow, your sails can be used to generate lift
 - 1. You are always in "pointingmode"
 - 2. Like fast catamarans.

V. Downwind sailing

- A. Spinnakers generate lift, which is faster than "push" mode
 - 1. Spinnaker concept
 - a) Projecting the luff to windward, to get air flowing around the sail, generating lift
 - b) "squaring the pole/luff to the wind" to get the luff positioned at the right angel of attack.
 - (1) (using symmetric spinnaker to illustrate the concept of generating lift downwind)

B. Poled out headsail is generating "push" – slower

- 1. Classic "wing and wing"
 - a) Dead down wind
 - b) Can't go faster than the wind
 - (1) Would need 10x more sail area
 - More work than an asymmetric spinnaker
- 2. Twin headsails -

c)

- a) very stable,
- b) good for relaxing on a offshore passage,
- c) but comparatively slowstill
- d) More work than an asymmetric spinnaker

C. VelocityMadeGood – which is faster?

- 1. DDW wing and wing, boat speed slower than the wind
- 2. Gybing, boat speed faster than the wind (YES!)

VI. Cruising Spinnaker - Sail downwind faster than the wind.

- A. Cruising spinnaker
 - 1. No pole
 - 2. Apparent wind between 90 and 140, sailing as deep as your boat can
 - 3. True wind speeds 1-20 knots (2-15kts for lightweight trailer boats)
 - 4. Making the sail smaller and flatter permits use in higher winds.

VII. Cruising Zero -Sail upwind faster than the wind in light winds

- A. Apparent wind diagram
- B. Cruising Zero (aka multihull screecher, Reaching Asymm)
 - 1. No pole straight luff with anti-torsion rope
 - 2. Apparent wind between 40 and 90 degrees, 2-10 knots
 - 3. Making the sail smaller and flatter permits use in higher winds.

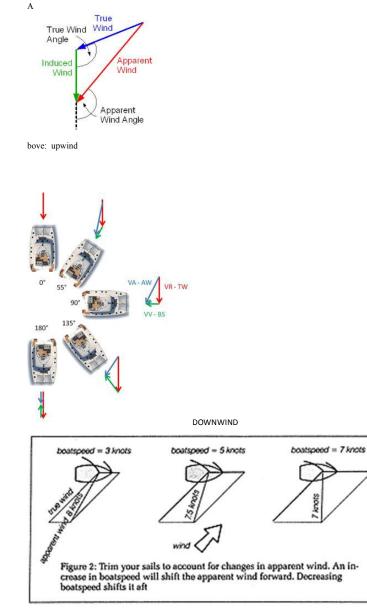
VIII. Racing codes: (Just for reference, not really for cruising sailors)

- A. Even # for downwind
- B. Odd # for upwind
- C. Higher # smaller area, flatter, used in higher winds
- D. Summary:
 - 1. Code 0: Apparent wind between 40 and 60 degrees
 - 2. Code 1: Apparent wind between 60 and 90 degrees, 2 to 10 knots
 - 3. Code 3: Apparent wind between 60 and 110, 11 to 18 knots
 - 4. Code 5: Apparent wind between 70 and 120, 18 to 25 knots
 - 5. Code 2: Apparent wind between 90 and and 140, 8 to 20 knots
 - 6. Code 4: Apparent wind between 100 and 180, 18 to 30 knots
 - 7. Code 6: Apparent wind between 120 and 180, over 25 knots.

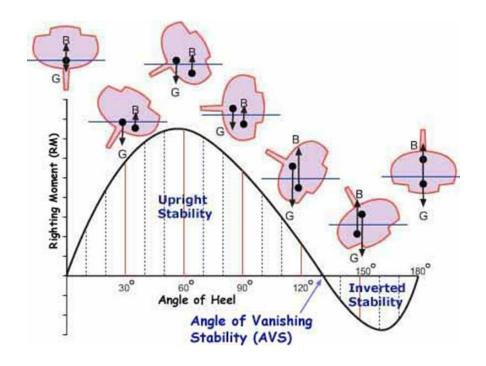
IX. Sail Handling for Cruising Spinnakers

- A. No Spinnaker Pole
- B. Launching from the companionway timeless, inexpensive
 - 1. Classic Potters (15 and 19): small Cruising Spinnaker, tacked to bow pulpit.
 - 2. Potters and small trailerables: stick to small area due to boat stability and for safety.
 - 3. No need for special gear other than a companionway launching bag

C. Snuffers – 1990's –


1. starting at \$100-200 for smaller boats

- 2. usually launched from foredeck
- D. Asymm furlers 2000's
 - 1. Launch and douse from the cockpit, easily.
 - a) Continuous furling lines for downwind spinnakers
 - b) For asymmetrics with rounded luff
 - (1) Eg Gennaker, Cruising Spinnaker
 - c) Selden GX furler is currently least expensive starting at about \$850
 - Upwind furlers


2.

1.

- a) For reachers with straight luffs, special Anti-torsion luff rope
- b) Ronstan Series 60 under \$300
- E. Optional Bow sprit kits available under \$500
 - 1. Separation between the mainsail and headsail
 - 2. Gets the luff of the spinny out from behind the mainsail
 - 3. Lets you sail deeper angles with the mainsail still up.
 - 4. Example: Selden
- X. Engineering calculations for strength and safety
 - A. Righting Moment as measure of boat "stiffness"
 - Determines how much sail area you can have vs heeling
 - 2. how strong to build the boat
 - a) Mast stiffness and chainplate location
 - b) Hull layup
 - c) Block sizes
 - d) keel trunk
 - B. Ultimate stability in case of knock down
 - 1. Center of buoyancy
 - a) Hull shape
 - 2. Center of gravity
 - a) Ballast weight and location

Downwind - if you go fast enough, will the wind be tighter than 90 degrees? Yes!

